Discovering Literary Topoi by Computer
Ian Lancashire

Topoi are hypothetical entities: conventional building blocks of lit-
crary content that writers associated in space and lime agree (o share. Yet
delineatng and identifying these ‘repeaters’ is not easy. Most literary
communities lack definition even at the peak of their life cycle. Should
an Aristotle be alive to chronicle the behaviour and propérties of such
i community, that critic will face uncerfainty abowt the most basic mat-
lers, such as the readiness of ils members—sometimes competing and
idinsyncratic—io affirm thal any communal properties exist al all. Mod-
emn European authors have not had scientific wilnesses to catalogue and
classify their topical commonplaces. We are left with the texts alone; they
must be made to reveal their own topol.

The process of topoi discovery begins by recognizing a subset of
texts from the entire literature of a language, what may be called a possible
milaxy of discourse in @ literary universe. Renaissance English drams will
do, ar 17th-18th-century French novels, or modern poetry. In selecting,
we resort 0 broad and obvious criteria like genre or period.

Next we have to ask what kind of commonplace or ‘repeater’ a
tapas is? It appears o be more extensive than a word or an idiomatic
phrase, less complex than an action or a character, liable to be found in
o simgle sentence or paragraph rather than over a page, and suggestive of
& concept or generally-applicable thematie topic rather than a rhetorical
figure of speech or synactic regularity. We are looking for something of
& medium order of complexily, like a chemical compound or a strand of
DNA rather than a fundamental particle or a molecule, Topoi are limited
complexilies thal characterize, neither the language (idioms, for instance,
are linguistic entities) nor the world as we make sense of it in history or
myth (plots and characiers) but the minds of writers as they concentrate
on & discrete event or thing or idea,

Maodern neuro-psychology gives a useful theoretical name for these

h——_

140 IAN LANCASHIRE

‘limited complexities.” Semantic nets consist of a group of concepts, im-
ages, sounds, or other ‘nodes’ of thought linked by association in such a
way that bringing up or ‘activating’ one arouses others in the net, exactly
how many to depend on the intensity of the thought.! The anatomy of the
nervous system offers a parallel physical structure or storage mechanism
for such associational nets. Neurons consist of a cell body, long axon,
and branching filament-like dendrites that, while not touching other neu-
rons, permit inter-neuron synaptic contact or ‘activation.” It is also worth
remembering that language processing in the cerebral cortex recognizes
the difference between syntactical (what is called above ‘linguistic’) and
semantic functions by locating them in two different places, the first in
Broca’s area, the second in Wernicke’s area. By focusing on semantic
elements in defining topoi, by distinguishing between them and rhetorical
figures of speech, we (as it were) recognize a functional distinction that
has been a commonplace of neuroscienee for over a century.?

All topoi may be semantic nets, but not all semantic nets are topoi.
Topoi are networks shared by a society of texts, not ones unique to any
given writer. Research on fopoi, then, is less psychological than socio-
logical: it aims to identify part of the basis of literary tradition.> Those
who study topoi, a non-random recurrence of semantic nets in a society of
texts, engage in a structural analysis that tries to falsify a literary theory
proposing that there is such a thing as a ‘global text’ of texts. Text analysis
is thus experimental; it belongs to a field that might be called text science
which begins with a hypothesis, develops procedures to test it, and alters
that hypothesis according to the results obtained. Topoi researchers use
text science, then, to test whether intertextual dynamics operate through a
‘cloud’ of thematic commonplaces.

Computers as Textual Laboratories

The computer is a tool for text science. Computer programs are collec-
tions of artificial ‘speech acts.” Expressions in a programming language

1 For representative computational approaches, see Roger C. Schank, “Lan-
guage and Memory,” Cognitive Science 4.3 (1980) 243-84.

2 An excellent introduction to this matter for non-scientists may be found in
The Brain (San Francisco: W.H. Freeman, 1979), especially two chapters: Eric
R. Kandel, “Small Systems of Neurons,” pp. 29-38, and Norman Geschwind,
“Specializations of the Human Brain,” pp. 108-117. .

3 D.F. McKenzie’s Bibliography and the Sociology of Texts (London: The
British Academy, 1986) has actively propounded this view for some time.

DISCOVERING LITERARY TOPO! BY COMPUTER 141

are often intended to have immediate and tangible effects, like a conduc-
tor’s cry “Move to the back, please” in a crowded streetcar. Together,
these acts form algorithms, which are experimental procedures for getting
a desired result from some initial conditions. The algorithms of interest
in topoi discovery belong to well-known fields in computer science like
text retrieval, processing, and analysis, natural language understanding,
and computational linguistics.* They have been widely applied in such
areas as word processing, online information services, database manage-
ment, automatic indexing or document classification, and expert systems.
Literary scholars do not need to invent new concepts in software to dis-
cover topoi. Much basic technology has been developed long ago by
programmers who wanted a reliable, rapid method of editing long com-
puter programs and is freely available now.
There are three steps in computer analysis of topoi:

1) Prepare the texts for searching (do ‘text mark-up’).

2) Choose the search strategy and conduct the search.

3) Use the results of the search to modify the text mark-up or the search
strategy.

This ‘looping’ or repetitive procedure does not in itself discover anything
but only retrieves for the researcher what he or she has actually requested.
The benefits of computational analysis are clerical and methodological.
Once texts have been put in machine-readable form, they may be searched
with far greater speed than may be done manually. More important, the
computer carries out with impressive literalness the instructions of the
researcher, not infrequently to expressions of astonishment as the true
meaning of those instructions becomes clear.

As a drudge, the computer will generate both invaluable evidence
of textual structures, and heaps of useless data. Its clerical function, then,
is less important than its role in helping critics refine their understanding
of what they are trying to do. Critics should not assume that existing
programs will relieve them from the need to think out acceptable method-
ology. I do not see any ready-made computational solution to the problem
of topoi discovery yet, perhaps because no literary critic has so far tried
to describe the problem clearly to a programmer.

Preparing the Texts

It might be thought that the first step in finding commonplaces by computer

4 For a general survey of the field, see lan Lancashire and Willard McCarty,
Humanities Computing Yearbook (Oxford: Oxford University Press, 1988).

142 AN LANCASHIRE

is to devise a suitable database structure o receive the results of searching,
but that is cerlainly not the case. Relational database management systems
{e.z., Oracle, Ingres, and other SQL-like programs) and traditional systems
(e.g., dBase IV) offer only the technology to store and sort on already-
known data, such s bibliographical records. There is no controversy about
what is and is not a book or aboul how 1o name its parts. Only when
tapoi have been identified and classified are they ready for cataloguing.
Only then will we know what will constitute the main ‘record” (the topos
name? the concepts oul of which topei are built?) and what parts or
‘fields’ this record will have (if we choose concepis as the building blocks
of topot, then one field for each block might list the topoi that may be
derived with it). Database managemenl systems organize for automatic
inquiry the resulis of discovery but cannot very well generate those results
from raw text.

Topei discovery begins by entering the collection of base texts into
computer-readable files with an optical scanner or with a word processor;
and the business of preparing a ‘textbase’ has more to it than appears at
first sight.

Legal considerations come into play quickly, because copying a text
electronically withoul permission infringes the author’s copyright if the
text has been created within the past sixty years or so. This caution may
also apply to editions of texts themselves well out of copyright, because
any edilor's decisions ahout choice of textual variants, spelling, punctua-
tion, and text format are themselves subject to copyright prolection, even
if the original author is unknown and the text is ancient. By un-editing
the text, by reproducing what exists in the original text rather than what
someone has thought the text really is, a researcher can avoid legal en-
langlements as well as ensure a basic text for experimentation that most
scholars will aceept.

On the other hand, as onlv a lillle thought will show, in creating
an electronic copy of a text someone determined to be faithful to the
original will still be put in the position of providing a substantial amount
of new (and thus copyrighted) editorial apparatus. This is so because a
reader of a paper book routinely, unthinkingly makes decisions about the
status of the text at any point that no computer can yet make. For ex-
ample, a text-searching program ‘reading’ through a play-text reproduced
verbatim would not be able to distinguish among preliminary material,
running-titles, page numbers, slage directions, speech prefixes, and dia-
Ingue. Chapter headings, 1wable of contents, footnotes, and epigraphs, in a
similar way, would all be blended in with the text of a novel. We rou-

DISCOVERING LITERARY TPO! BY COMPUTER 143

tinelv and unconsciously disambiguate true hyphens, end-of-line hyphens,
afid }]Mhﬁ, or ap.nslmphﬂs and closing single quoles, or *scare’ quoles
and marks enclosing words spoken by a chnmc:gr. We knr:tw thal page
aumbers mark the location of section of text in a work lineatly from
start to finish and recognize that years or ages rendered in arabic numbers
in running text do nol indicate 4 new page. :

Programs searching a text have to be instructed in advance about all
these things. Only by tagging or encading a text as it is being entered into
machine-readable form can & computer be protecied from blunders about
the nuture of what it is recording.

Text mark-up (as tagging is sometimes called) at present has no
standards. A group of researchers in the Association of Literary and
Linguistic Computing, the Association for Computing and the Humanities,
and the Association for Computational Linguistics led by Nancy Ide has
recently been funded by the National Endowment for the Humanizies to
develop a standard mark-up procedure for literary texts. This will probably
be based on an International Standards Organization (150 standard named
SGML, Standard Generalized Markup Language. which has been adopled
by publishers in the United States and many other countries as a format
for the exchange of machine-readable texts. SGML represents a syntax
only, It does not list any actual tags for handling literary texts, but some
guidance now may be found in research underway by George Logan and
David Barnard.®

Tazs are simply labels, pieces of code in a rigid format (or syn-
tax) that a program has been told to recognize as labels and nof as text
Normally a tagging system identifies one character as the start of a tag;
this letter cannot appear in the text. [use the opening diamond bracket.
Consider Robert Frost’s sonnet “Design,” prepared with tags.®

<texttitle *Design™>

<textauthor “Robert Frost”=
<compositiondate “1936">

<lextpocm:

¥ D.T. Bamard, C.A. Fraser, and G M, Logan, “Generalized Markup for Liter-
ary Texts," Literary and Linguistic Computing 3.1 (1988) 26-31; and D.T' Barnard,
B. Hayter. M. Karababa, G. Logan, and J. McFadden, “SGML-Based Markup for
Literary Texts: Two Problems and Some Solutions,” Computers and the Humani-
ties 22 (1988) 265-76.

& The Norton Anthology of Modern Poerry, od. Richard Ellmann and Robert
' Clair {New York: Norton, 1973) 212

144 LAN LAMNCASHIRE

<poemiype “sonnel” >

<slanzalypc "octave >

1 found a dimpled spider, fat and white,

On 2 white heal-all, holding up 4 moth [

Like a white piece of rigid satin cloth/- /¥
Assoried characters of death and blight /f

Mixed ready to begin the morning right.

Like the ingredients of a witches® broth/-

A snow-drop spider, a flower like a froth, //

And dead wings carried like a paper kite. (/
<stanzalvpe “sestet”>

Whal had that flower 1o do with being white, #
The wayside blue and innocent heal-all? /f

Whal brought the kindred spider to that height, //
Then steered the white moth thither m the night? /f

What but design of darkness to appalll/- /¥
If design govern in a thing so small.

<Mexipocm

The terms ‘texttitle,’ ‘textauthor,’ ‘poemtype,’ ‘compositiondate.’
‘text{poem],” and ‘stanzalype’ all give information about the text that is
not part of the text, and all belong to a special artificial tagging vocabulary,
A double virgule marks end-of-verse-line (so as to be distinguishable from
ordinary line-ends in prose), and the dash in “broth—" is distinguished
frorn the hyphen in *heal-all’ by a preceding virgule. Froma computational
point-of-view, every word in the second stanza may be considered o have
attached to it the title *Deszign,” the author *Robert Frost,' the date “1934,"
the poem form ‘sonnet,’ and the stanza-type ‘gegier,’ These six lines will
be retrieved should a search be made for text marked with any of these
tags. .

Until a standard emerges, researchers will use any reasonable tagging
nolation, including the so-called *“COCOA’ markers identified with the
Oxford Concordance Program and the COCOA program from which it
came.” Converting from one set of codes 1o another may be done later with
any number of search-and-replace functions in word-processing programs,
text-analysis systems, or string-handling languages such as SNOBOLA4.
Thoughtful tagging rather than the use of a given syntax is what counls.

T See Mumanities Compunng Yearbook, pp. 320-23.

MSCOVERING LITERARY TP BY COMPUTER 145

Search Strategies
A search strategy is just an intelligent sieve into which the text is ‘poured’
and in which parts of the text collect that cannot pass through.

Content analysis involves two kinds of search strategy. In the first,
implemented in programs such as the General Inquirer and TextPackV,?
4 reszarcher lists all ropos-signalling words or “strings” in an especially-
created thesaurus or dictionary beside all topor to which it might conceiv-
aﬂy belong. Then the program checks cach word in the text consecutively
against the dictionary. If a text word appears in it, the program writes
the tapos name, followed by the location in which it has been “found’ in
the text. The second strategy does not ook for ‘literal” strings or words
but rather for generalized patterns or formulae that may contain no actual
words al all. For instance, “[infinitivel] + [conjunction] + [negative] +
[infimitivel]" would catch Hamlet’s “To be or not to be™ and an unpre-
dictable number of parallel phrases that may or may not be echoes of the
Prince.

Computer-based analysis may seem to work most productively in the
first case, when we know what we are looking for. The search Function
of most word-processing programs, afier all, asks the user to specify the
word or phrase to be found. If researchers already have a catalogue of
topot and their defining features, then thesaurus-driven content analysis
will do an acceptable job of amassing 2ll examples obeying those known
crteria. Yet @ moment’s thought will show that this kind of sieve can
neither find out new kinds of topei nor improve the defining criteria. If
we know what we wanl to find, can we be said to be discovering anything
new when we find it? Automatic retrieval procedures become truly useful
when they complement manual searching, not when they duplicate it.

For this reason, fopoi discovery should also use generalized search
algorithms that find word patlerns—structures—rather than literals.
‘Regular-expression’ searching by the so-called grep command in Unix,
designed for relatively uninflecied languages such as English, is probably
the best known patern-matching utility. A regular expression is built from
both literal alphanumeric characters (letters and numbers) and ‘metachar-
aclers,” which may stand for any zero or more alphanumeric characters or
for one or more of a selected list of them. A regular expression in this
way may describe a pattern of characters which many words will satisfy.”

Three important types of regular expression are wildcards, closure,

§ See Hwmanities Compuring Yearbook, pp. 327-28, 331
® Two text-analysis and retrieval microcomputer programs for MS5-DOS sys-

|46 1AN LANCASHIRE

and characler class.
wildeard: A gquestion mark may stand for any character. The regu-
lar expression ‘sTng,” then, will capture ‘sing,” "sang,” 'song,” and

'Sung.
closure: An asterisk may stand for any zero or more occurrences of

the characler or metacharacter preceding it. The regular expression

‘so*n’ will capture *sn,” ‘son” and ‘soon.’
character class: Square brackets enclose a ‘class’ of chamacters that

are regarded, for searching purposes, as being identical. The reg-

ular expression “sfou]n’ will capture ‘son’ and ‘sun’ bul not ‘sin’

{this as well would be caught with “s[iou]n"). Specilying ranges of

alphanumeric characters may be dope: eg., ‘[2-zA-Z0-9]" caiches

any alphanumeric character, and ‘[...;:!7]" any punctuation mark. A

caret prefixing characters inside square brackets yields any alphanu-

meri¢ character except those listed: e.g., “ho[aziou}d' would capture

‘hold" and ‘hord” but not “hood.’

By combining all three metacharacters within the same regular ex-
pression we are able to match all inflected forms of some words. For
example, ‘s[aio]nfa-z]*" will caplure 'sang,” ‘songs,’ and ‘singing.” A
pattern matching most single words is [a-zA-Z][a-zA-Z]*, which eombines
closure with character-class metacharacters,

Ad hoc individual searching for regular expressions can yield many
surprising new possible ‘repeaters” but most will only be single words or
phrases which turn out not to be fepoi bul rather different morphological
forms of the one word, or synlaclic “frames,’ or semi-formulaic and pop-
ular turns-of-phrase, both embedded in common speech of the time. For
example, we can be sure that matches for common syntactic frames like
‘[a-zA-Z][a-2A-Z]* is [a-zA-Z][a-2A-Z]*, [a-2A-Z][a-2A-Z]" [a-zA-Z][a-
zA-Z)*" (e.g., “Thuh is beauty, beauty truth.” or ‘Henry is intelligent,
it seems.") do not belong to the same fopos. Of course, in reading the
output of the search we might well find a syntactic ingredient found in all
examples of a topos largely defined by a common semantic node and not
included in the actual specifications for the search.

Searching for topol means searching for collocations, that is, co-
pccurrences of words or groups of words. Repularly associated words,
collocations, are the semantic networks that 1 have identified with ropor.

Special pattern-matching programming languages like SNOBOLY,

tems produced at the University of Toronto, Miceo Text-Analysis System (MTAS)
and TACT, an interactive retricval and category analysis program, both have a
grep pattern-matching built-in,

DISCOVERING LITERARY Forol BY COMPUTER 147

which mﬁmm most af the functionality of the grep funclion, in_ uddition
allow for collocational searches. These can trap the multiple simultane-
ous patterns that we find in saptanlic netiwor k=,]n[:ZE'EIE'li'r'L" text-retrieval
programs such as WordC runcher,'" workifig o pre-indexed texts, o1 ean-
cordance svstems such as Micro-OCP, will alse handle collocations. '
Such pmgr:_nm-; ean be instructed to search anly for co-occurring wonds,
ar collocations, but will only act on well-formed, user-specified search
patterns. We have to know meadvance what we want to find and be able
to sthile it precisely.

The more general the formula, the more interesting jis results, The
idenl search engine would operute awomatically 1o cawch all repeated se-
mantic networks, mo meiter Wi theie comtent was. This procedure does
not ask the researcher in advince whal he or shewanis to find. Tt 'wounld be
possible, rather, to ask for all instances where any three content words'>
collocated within (sav) a block of 100-200 words within the entire col-
lection of 1exis being examined. This procedure could look for all combi-
nations of any three conlent words found in 2 given paragraph or stanza
that pecur anvwhere inside all other paragraphs within Lhe Corpus.

Consider, for instance; the beginning of Frost’s “Design.” This has
33 cortenl words, which reduce to 32 aftér conversion into *canonical’
or “lemmatized” forms, as might be done by & computer using routine
dictionary look-up and a group of momphological rules before the actual
sgarch.

assoried == pssor ingredienis == ingredient
B g kil

bright mixed => mix

brath marning

camed => carry moth

characiars == charactar paper

cloth pisce

dend, death == die oy

design right

W Hisnanities Computing Yearbook, pp. 3157-8.

& concordance is o word-index where ezch occurrence of 3 wordotyps (ne
Weyword) is soried under i1 spelling, the so-called headword, along with a context
that normally consists of the rest of the line in which the word occurred, and &
citation reference to the original texl.

12 Content wards are normally considered ta be nouns, verbs, adjectives; and
adverbs, in contrast 1o so-called Runction words, which eomprise delerminers,
awxiliary verbs; prepositions, conjunctions, ¢ic.

145 1AN LANCASHIRE

dimpled => dimple rigid

fal satin

flenwer snow-drop
found == find spider

froth white

heal-afl wings == wing

haolding == hold witghes =3 witch

The number of possible combinations of any three of these words,
while substantial (well over 4000), is not so large that they could not be
autormatically scarched in each other puragraph in a corpus, This would
yield many otherwise hard-to-discover combinations in a svsizmatic way,

Yet in a large corpus the number of uninteresting matches (from the
viewpoint of ropal) would be too many in practice. Almost any com-
bination of any three of ‘begin,’ “find,” ‘piece,” ‘ready,” and ‘right,’ for
instance, would net many matches of no consequence. The critic’s time
wiould be wasted in considering most of these if the object were 10 find
convenlional elements in Frost's poem.

The procedure needs refining. Several ways of improving the ‘sieve’
have been used with some suceess in ather applications, Possible colln-
cations could be limited (o anes involving freguent words i Frost's lines,
such as ‘spader” (twice) and ‘white” (thres limes). Or the 32 narget words
could be compared to the total vocabulary of all 1exts o see which of
them in Frost’s poem appear to be distinclive—i.e. important to the con-
text, and not shared routinely by other texts—and then the program could
search for collecations involving cnly distinctive words: Other statistical
techniques have been used fo evaluate just how significant a collocation
in fact is'?

Other ropoi may be identified as much by grammatical form as by
content words. Hamlet’s “To be or not to be,” for instance, might be
echoed in passages with entirely different content words. In order to
calch complexities of this sort, a search pattern of the form “To X or not
to X" might be sufficient (employing wildcards for the missing content
words), but here again the rescarcher has to know in advance exuactly what

13 For research on ‘automatic document classification” by statistical analysis
of the vocabulary of u text, sce Martin Phillips” Aspects of Text Structure: An In-
vestigation of the Lexical Ovganization of Text (Amsterdam: North-Holland, 1985)
and my “Using a Texchase for English-language Research™ in The Uses of Large
Text Darabases, Proceadings of the Thind Annual Conference of the UW Centre
for the New Qxford English Dictioniry [Waterloe, Onl: UW Centre for the New
OED, 1987), pp. 51-64.

DISEOVERING LITERARY TENYN BY COMPUTEHR 149

patterns 10 retrieve. A more general solution would have the corpus of
texts pre-tagged with part-of-speech and even [ull syntactic structure, a
feat that only a natural-language-understanding svstem of substantial size
and power could maniage. The scarch-engine might then look for any
unusual repetition or combination of syntactic patterns found in Frost's
lines, not just for collocating words. For this purpose, the textbase would
have to be represenied to the computer in a form quite unlike the very
long linear *string’ il now assumes.

These techniques are plainly experimental. They will undoubtedly
identify new (opoi and new examples of known tapoi, but perhaps com-
putational methods will alse bring about a revision of the grounds of
tapoi creation itself, to the end that we can better understand why some
repeating patterns become topoi, and not others.

A Sample Search

In ‘Design,” Frosl draws our eye 10 something small: a white spider having
cavght a white moth on a white flower thar ought to have been blue. He
hints at a sinister power bringing together the unusual flower, a spider that
climbs when it should not. and a moth attracted to a whiteness impossible
to see in the night. Then, in a surprisingly eerie change of mind, he makes
this little death the more siriking by doubting the possibility of any design
or order in something so easy to overlook.

Is this modern fable a topos in 20th-century verse? Perhaps it is,
because a similar theme, presented comically, emerges in don marquis’ “a
spider and a fly,” where a fly argues with a spider that he should not eat
him who serves “a great purpose / in the world.® The fly lives 1o carry
ECrms om its wings

into the houscholds of men
and give them diseasey

all the people whao

huve lived the right

sorl of life recover

from the discascs

and the old saaks who

have weekened their systems
with liguor and iniguity
succumb il s my mission

to help rid the world

of thest wicked persons

i am a vessel of righleousness

150 LAN LANCASHIRE

seattering sceds of justice™

The eloguent spider replies forcefully that he serves “the gods of beauty”
by creating webs and that the fly, a servant of merely “utilitarian deities,”
has no right to starve the superior artist,

a creator and a demi god

it is ridiculous 1o suppose

that i should be denied

the food i need in order

o comtinue o creals

beauty i tell you

plainly mister Ay it is all
damned nonsense for that fooed
to tear up on s himd legs

and say it should not be caten

This rebuttal convinces the fly, who can only prolest weakly that he could
have made a stranger case if he had “had a better line of talk.” a point
gccepted by the spider with the cynical observation,

af course you could said the spider
clutching a sitinin from him

but the end would have been

just the same il neither of

us had spoken at all

a pronouncement that archie the cockroach, at the end of the poem, says
makes him “think/ furiously epon the futility/ of literature.”

don marguis amusingly touches on Frost’s first implication, that a
dark design has worked out an end for us no matter what we may have to
say aboul it. A greater poet, Frost gives this almost trite thought a much
more sinister iwist at the sonnet’s close. That marquis read Frost's early
version of the sonnel, dated 1912, before he wrote archy’s verse sometime
after 1916 is unlikely. It is possible, however, that the spider—fly/moth—
fate theme existed as z literary fopos in the world of modern American
popular verse,

Suppose, then, that such a topoes exisls. Could a computer draw
attention to it in a lextbase containing the work of both writers?

The search method of trying every three-word combination in Frost's
octave would have retrieved marquis’ verse when Frost’s (lemmatized)

1 don marquis, archy and mehirebel (Garden City, New York: Delphin Dooks,
1960) 40-2.

DISCOVERING LITERARY FOPor BY COMPUTER 151

words, “spider,” “wing," and ‘right,” were tried with archy s first 100 words,
If the sieve caught not just exact matches, bul synonyms, then it would
have trapped a fourth match, Frost's word *design’ (i.e, archy’s word
‘purpose’).

Al this paint in the development of computer tools for 1ext research,
it might be expected that ‘intelligent’ systems, rather than methodical
brute-force processing, would be available to literary scholars for their
work. To a degree they are, in natural-language understanding systems,
but in practice these promise not only 10 refine the searches we want to
dao but to complicate them unpredictably, A svslem thal can search for
a maich 1o a passage by trawling for the exact words, their canonized
word-forms, their known synonyms or antonyms, and even aspects of the
synlactical structure of the passage in which they are found would give us
oo many choices (if it waited on instructions from us) or toe much output
(if it ran automatically, exhausting all options). The parallel-processing
machines on which this kind of search should be made will be within reach
of the average scholar in the next few years. Yet until we have machines
with something of the intelligence of ourselves—we know when to take
short cuts—the simple brute-force approach outlined here might do well
enough, both to collect representative sets of rapoi and to improve theories
of tapoi formation so thal we can pose better still better guestions.

University of Toronto

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

